Services¶
In order to promote uniformity in the management of threads, and in particular of the thread initialisation and destruction processes, the framework offers a thread service abstraction (see EmbeddedServiceI).
The following use-cases are covered: single-thread, multi-thread (each concurring for the same resource) and client oriented connection (e.g. web server).
The callback function (called by the service) shall have the following prototype: (MARTe::ErrorManagement::ErrorType (*)(MARTe::EmbeddedServiceI::ExecutionInfo &))
. The name of the callback function is registered by implementing the EmbeddedServiceMethodBinderT interface.
All service implementations will continuously call the callback function with a given state (represented by the input ExecutionInfo). The service will act accordingly to the returned value (see below).
Note
The callback function shall avoid blocking the execution and return as soon as possible.
Any of the EmbeddedServices offers a Start
and a Stop
method. The latter guarantees that the thread is killed if it not gracefully terminated by the application with-in a given timeout period.
All the thread parameters (affinity, stack, number of threads, …) can be changed using the specific service API or using the standard Initialise
method.
SingleThreadService¶
The SingleThreadService commands an EmbeddedThread which in turn continuously call the registered callback function with one of the stages set below.

Depending on the callback return value, the ExecutionInfo stage of each callback call is set as follows:
Stage |
Condition(s) |
StartupStage |
After |
If the callback returns an ErrorType which is not |
|
MainStage |
Until |
TerminationStage |
If the callback returns an ErrorType which is |
BadTerminationStage |
If the callback returns an ErrorType which is not |
AsyncTerminationStage |
If the thread was killed after trying to gracefully terminate with a |
The first time the SingleThreadService::Stop()
is called, the EmbeddedThread will wait for the callback function to return and will call it one last time with the ExecutionInfo stage set to BadTerminationStage
.
If, in the meanwhile, the SingleThreadService::Stop()
is called a second time, the thread will be killed (see Kill
in the Threads API) and the callback will be (asynchronously) called with the ExecutionInfo stage set to AsyncTerminationStage
.
Warning
The service can only be killed if a finite timeout was configured, otherwise it will wait forever to be gracefully stopped.
MultiThreadService¶
The MultiThreadService offers an equivalent function to the EmbeddedServiceI with one or more threads. The threads will concurrently call the callback function.

MultiClientService¶
The MultiClientService is a connection oriented implementation of the service described above. In particular the GetStageSpecific
of the ExecutionInfo is used to trigger connection oriented events:
StageSpecific |
Condition(s) |
WaitRequestStageSpecific |
Wait for a connection request. |
ServiceRequestStageSpecific |
Serve a specific request. |

The number of threads is allowed to be increased/decreased by the service between the values defined by GetMinimumNumberOfPoolThreads ()
and GetMaximumNumberOfPoolThreads ()
.
Note
The callback should not block and should return ErrorManagement::Timeout
while awaiting for a connection to be established.
After a connection is established (ServiceRequestStageSpecific) the callback shall return ErrorManagement::Completed
when the service has been completed.
Examples¶
SingleThreadService¶
The following is an example which highlights all the possible ExecutionInfo callback stages.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | /**
* @file SingleThreadServiceExample1.cpp
* @brief Source file for class SingleThreadServiceExample1
* @date 24/04/2018
* @author Andre Neto
*
* @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
* the Development of Fusion Energy ('Fusion for Energy').
* Licensed under the EUPL, Version 1.1 or - as soon they will be approved
* by the European Commission - subsequent versions of the EUPL (the "Licence")
* You may not use this work except in compliance with the Licence.
* You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
*
* @warning Unless required by applicable law or agreed to in writing,
* software distributed under the Licence is distributed on an "AS IS"
* basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the Licence permissions and limitations under the Licence.
* @details This source file contains the definition of all the methods for
* the class SingleThreadServiceExample1 (public, protected, and private). Be aware that some
* methods, such as those inline could be defined on the header file, instead.
*/
#define DLL_API
/*---------------------------------------------------------------------------*/
/* Standard header includes */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Project header includes */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "BasicTCPSocket.h"
#include "ConfigurationDatabase.h"
#include "ErrorLoggerExample.h"
#include "EmbeddedServiceMethodBinderT.h"
#include "ObjectRegistryDatabase.h"
#include "StandardParser.h"
#include "SingleThreadService.h"
/*---------------------------------------------------------------------------*/
/* Static definitions */
/*---------------------------------------------------------------------------*/
namespace MARTe2Tutorial {
/**
* @brief a class that contains a single thread service with an embedded binder.
*/
class SingleThreadServiceExample1: public MARTe::Object, public MARTe::EmbeddedServiceMethodBinderT<SingleThreadServiceExample1> {
public:
CLASS_REGISTER_DECLARATION()SingleThreadServiceExample1() :
MARTe::Object(), MARTe::EmbeddedServiceMethodBinderT<SingleThreadServiceExample1>(*this, &SingleThreadServiceExample1::ThreadCallback), service(
*this) {
counter = 0u;
}
virtual ~SingleThreadServiceExample1() {
using namespace MARTe;
if (GetName() != NULL) {
REPORT_ERROR_STATIC(ErrorManagement::Information, "No more references "
"pointing at %s [%s]. The Object will "
"be safely deleted.",
GetName(), GetClassProperties()->GetName());
}
}
virtual bool Initialise(MARTe::StructuredDataI &data) {
bool ok = MARTe::Object::Initialise(data);
if (ok) {
ok = service.Initialise(data);
}
return ok;
}
MARTe::ErrorManagement::ErrorType ThreadCallback(MARTe::ExecutionInfo &info) {
using namespace MARTe;
ErrorManagement::ErrorType err;
if (info.GetStage() == ExecutionInfo::StartupStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::StartupStage");
}
else if (info.GetStage() == ExecutionInfo::MainStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::MainStage");
if (counter == 0u) {
err = ErrorManagement::Completed;
}
else {
err = ErrorManagement::FatalError;
}
}
else if (info.GetStage() == ExecutionInfo::TerminationStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::TerminationStage");
err = ErrorManagement::NoError;
counter++;
}
else if (info.GetStage() == ExecutionInfo::BadTerminationStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::BadTerminationStage");
counter++;
//Simulate error to force killing
while (true) {
Sleep::Sec(0.2);
}
}
else if (info.GetStage() == ExecutionInfo::AsyncTerminationStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::AsyncTerminationStage");
err = ErrorManagement::NoError;
}
Sleep::Sec(0.2);
return err;
}
MARTe::SingleThreadService service;
MARTe::uint32 counter;
};
CLASS_REGISTER(SingleThreadServiceExample1, "")
}
/*---------------------------------------------------------------------------*/
/* Method definitions */
/*---------------------------------------------------------------------------*/
int main(int argc, char **argv) {
using namespace MARTe;
using namespace MARTe2Tutorial;
SetErrorProcessFunction(&ErrorProcessExampleFunction);
StreamString configurationCfg = ""
"+SingleThreadServiceExample1 = {\n"
" Class = SingleThreadServiceExample1\n"
" Timeout = 100\n" //100 ms
" CPUMask = 0x1\n"
"}";
REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading CFG:\n%s", configurationCfg.Buffer());
ConfigurationDatabase cdb;
StreamString err;
//Force the string to be seeked to the beginning.
configurationCfg.Seek(0LLU);
StandardParser parser(configurationCfg, cdb, &err);
bool ok = parser.Parse();
ObjectRegistryDatabase *ord = ObjectRegistryDatabase::Instance();
if (ok) {
//After parsing the tree is pointing at the last leaf
cdb.MoveToRoot();
ok = ord->Initialise(cdb);
}
else {
StreamString errPrint;
errPrint.Printf("Failed to parse %s", err.Buffer());
REPORT_ERROR_STATIC(ErrorManagement::ParametersError, errPrint.Buffer());
}
ReferenceT<SingleThreadServiceExample1> singleThreadService;
if (ok) {
singleThreadService = ord->Find("SingleThreadServiceExample1");
ok = singleThreadService.IsValid();
}
if (ok) {
singleThreadService->service.Start();
while (singleThreadService->counter != 2) {
Sleep::Sec(0.2);
}
singleThreadService->service.Stop();
Sleep::Sec(0.2);
//Kill the service
singleThreadService->service.Stop();
}
//Purge all the Objects!
ObjectRegistryDatabase::Instance()->Purge();
return 0;
}
|
MultiThreadService¶
This is an example similar to the above but with a MultiThreadService.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | /**
* @file MultiThreadServiceExample1.cpp
* @brief Source file for class MultiThreadServiceExample1
* @date 24/04/2018
* @author Andre Neto
*
* @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
* the Development of Fusion Energy ('Fusion for Energy').
* Licensed under the EUPL, Version 1.1 or - as soon they will be approved
* by the European Commission - subsequent versions of the EUPL (the "Licence")
* You may not use this work except in compliance with the Licence.
* You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
*
* @warning Unless required by applicable law or agreed to in writing,
* software distributed under the Licence is distributed on an "AS IS"
* basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the Licence permissions and limitations under the Licence.
* @details This source file contains the definition of all the methods for
* the class MultiThreadServiceExample1 (public, protected, and private). Be aware that some
* methods, such as those inline could be defined on the header file, instead.
*/
#define DLL_API
/*---------------------------------------------------------------------------*/
/* Standard header includes */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Project header includes */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "BasicTCPSocket.h"
#include "ConfigurationDatabase.h"
#include "ErrorLoggerExample.h"
#include "EmbeddedServiceMethodBinderT.h"
#include "ObjectRegistryDatabase.h"
#include "StandardParser.h"
#include "MultiThreadService.h"
/*---------------------------------------------------------------------------*/
/* Static definitions */
/*---------------------------------------------------------------------------*/
namespace MARTe2Tutorial {
/**
* @brief a class that contains a single thread service with an embedded binder.
*/
class MultiThreadServiceExample1: public MARTe::Object, public MARTe::EmbeddedServiceMethodBinderT<MultiThreadServiceExample1> {
public:
CLASS_REGISTER_DECLARATION()
MultiThreadServiceExample1() :
MARTe::Object(), MARTe::EmbeddedServiceMethodBinderT<MultiThreadServiceExample1>(*this, &MultiThreadServiceExample1::ThreadCallback), service(
*this) {
counter = NULL;
}
virtual ~MultiThreadServiceExample1() {
using namespace MARTe;
if (GetName() != NULL) {
REPORT_ERROR_STATIC(ErrorManagement::Information, "No more references "
"pointing at %s [%s]. The Object will "
"be safely deleted.",
GetName(), GetClassProperties()->GetName());
}
delete counter;
}
virtual bool Initialise(MARTe::StructuredDataI &data) {
bool ok = MARTe::Object::Initialise(data);
if (ok) {
ok = service.Initialise(data);
}
if (ok) {
counter = new MARTe::uint32[service.GetNumberOfPoolThreads()];
MARTe::uint32 n;
for (n=0u; n<service.GetNumberOfPoolThreads(); n++) {
counter[n] = 0u;
}
}
return ok;
}
MARTe::ErrorManagement::ErrorType ThreadCallback(MARTe::ExecutionInfo &info) {
using namespace MARTe;
ErrorManagement::ErrorType err;
if (info.GetStage() == ExecutionInfo::StartupStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::StartupStage");
}
else if (info.GetStage() == ExecutionInfo::MainStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::MainStage");
if (counter[info.GetThreadNumber()] == 0u) {
err = ErrorManagement::Completed;
}
else {
err = ErrorManagement::FatalError;
}
}
else if (info.GetStage() == ExecutionInfo::TerminationStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::TerminationStage");
err = ErrorManagement::NoError;
counter[info.GetThreadNumber()]++;
}
else if (info.GetStage() == ExecutionInfo::BadTerminationStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::BadTerminationStage");
counter[info.GetThreadNumber()]++;
//Simulate error to force killing
while (true) {
Sleep::Sec(0.2);
}
}
else if (info.GetStage() == ExecutionInfo::AsyncTerminationStage) {
REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::AsyncTerminationStage");
err = ErrorManagement::NoError;
}
Sleep::Sec(0.2);
return err;
}
MARTe::MultiThreadService service;
MARTe::uint32 *counter;
};
CLASS_REGISTER(MultiThreadServiceExample1, "")
}
/*---------------------------------------------------------------------------*/
/* Method definitions */
/*---------------------------------------------------------------------------*/
int main(int argc, char **argv) {
using namespace MARTe;
using namespace MARTe2Tutorial;
SetErrorProcessFunction(&ErrorProcessExampleFunction);
StreamString configurationCfg = ""
"+MultiThreadServiceExample1 = {\n"
" Class = MultiThreadServiceExample1\n"
" NumberOfPoolThreads = 3\n"
" Timeout = 100\n" //100 ms
" CPUMask = 0x1\n"
"}";
REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading CFG:\n%s", configurationCfg.Buffer());
ConfigurationDatabase cdb;
StreamString err;
//Force the string to be seeked to the beginning.
configurationCfg.Seek(0LLU);
StandardParser parser(configurationCfg, cdb, &err);
bool ok = parser.Parse();
ObjectRegistryDatabase *ord = ObjectRegistryDatabase::Instance();
if (ok) {
//After parsing the tree is pointing at the last leaf
cdb.MoveToRoot();
ok = ord->Initialise(cdb);
}
else {
StreamString errPrint;
errPrint.Printf("Failed to parse %s", err.Buffer());
REPORT_ERROR_STATIC(ErrorManagement::ParametersError, errPrint.Buffer());
}
ReferenceT<MultiThreadServiceExample1> multiThreadService;
if (ok) {
multiThreadService = ord->Find("MultiThreadServiceExample1");
ok = multiThreadService.IsValid();
}
if (ok) {
multiThreadService->service.Start();
uint32 n;
for (n=0u; n<multiThreadService->service.GetNumberOfPoolThreads(); n++) {
while (multiThreadService->counter[n] != 2) {
Sleep::Sec(0.2);
}
}
multiThreadService->service.Stop();
Sleep::Sec(0.2);
//Kill the service
multiThreadService->service.Stop();
}
//Purge all the Objects!
ObjectRegistryDatabase::Instance()->Purge();
return 0;
}
|
MultiClientService¶
The custom component TCPSocketMessageProxyExample
forwards TCP messages into MARTe messages.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | /**
* @file TCPSocketMessageProxyExample.cpp
* @brief Source file for class TCPSocketMessageProxyExample
* @date 13/04/2018
* @author Andre Neto
*
* @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
* the Development of Fusion Energy ('Fusion for Energy').
* Licensed under the EUPL, Version 1.1 or - as soon they will be approved
* by the European Commission - subsequent versions of the EUPL (the "Licence")
* You may not use this work except in compliance with the Licence.
* You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
*
* @warning Unless required by applicable law or agreed to in writing,
* software distributed under the Licence is distributed on an "AS IS"
* basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the Licence permissions and limitations under the Licence.
* @details This source file contains the definition of all the methods for
* the class TCPSocketMessageProxyExample (public, protected, and private). Be aware that some
* methods, such as those inline could be defined on the header file, instead.
*/
#define DLL_API
/*---------------------------------------------------------------------------*/
/* Standard header includes */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Project header includes */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "ConfigurationDatabase.h"
#include "Message.h"
#include "MessageI.h"
#include "StandardParser.h"
#include "TCPSocketMessageProxyExample.h"
/*---------------------------------------------------------------------------*/
/* Static definitions */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Method definitions */
/*---------------------------------------------------------------------------*/
namespace MARTe2Tutorial {
TCPSocketMessageProxyExample::TCPSocketMessageProxyExample() :
MARTe::Object(), MARTe::EmbeddedServiceMethodBinderI(), tcpClientService(*this) {
waitForConnection = true;
mux.Create();
timeout = 10;
}
TCPSocketMessageProxyExample::~TCPSocketMessageProxyExample() {
using namespace MARTe;
if (tcpClientService.Stop() != ErrorManagement::NoError) {
if (tcpClientService.Stop() != ErrorManagement::NoError) {
REPORT_ERROR(ErrorManagement::Warning, "Could not Stop the tcpThreadService");
}
}
mux.UnLock();
mux.Close();
if (!socket.Close()) {
REPORT_ERROR(ErrorManagement::Warning, "Could not Close the socket");
}
}
bool TCPSocketMessageProxyExample::Initialise(MARTe::StructuredDataI & data) {
using namespace MARTe;
uint32 port;
bool ok = Object::Initialise(data);
if (ok) {
ok = data.Read("Port", port);
if (!ok) {
REPORT_ERROR(ErrorManagement::ParametersError, "Could not Read the Port parameter");
}
}
if (ok) {
ok = socket.Open();
if (!ok) {
REPORT_ERROR(ErrorManagement::ParametersError, "Could not Open server socket");
}
}
if (ok) {
ok = socket.Listen(port);
if (!ok) {
REPORT_ERROR(ErrorManagement::ParametersError, "Could not Listen on port %d", port);
}
}
if (ok) {
tcpClientService.SetName(GetName());
ok = (tcpClientService.Start() == ErrorManagement::NoError);
if (!ok) {
REPORT_ERROR(ErrorManagement::ParametersError, "Could not Start tcpClientService");
}
}
if (ok) {
REPORT_ERROR(ErrorManagement::Information, "Server listening in port %d", port);
}
return ok;
}
MARTe::ErrorManagement::ErrorType TCPSocketMessageProxyExample::Execute(MARTe::ExecutionInfo & info) {
using namespace MARTe;
ErrorManagement::ErrorType err;
if (info.GetStageSpecific() == MARTe::ExecutionInfo::WaitRequestStageSpecific) {
mux.Lock();
if (waitForConnection) {
waitForConnection = false;
mux.UnLock();
BasicTCPSocket *client = socket.WaitConnection(timeout);
if (client != NULL_PTR(BasicTCPSocket *)) {
REPORT_ERROR(ErrorManagement::Information, "Connection accepted!");
mux.Lock();
waitForConnection = true;
info.SetThreadSpecificContext(reinterpret_cast<void *>(client));
err = ErrorManagement::NoError;
mux.UnLock();
}
else {
mux.Lock();
waitForConnection = true;
err = ErrorManagement::Timeout;
mux.UnLock();
}
}
else {
mux.UnLock();
MARTe::Sleep::MSec(timeout);
err = ErrorManagement::Timeout;
}
}
if (info.GetStageSpecific() == MARTe::ExecutionInfo::ServiceRequestStageSpecific) {
BasicTCPSocket *client = reinterpret_cast<BasicTCPSocket *>(info.GetThreadSpecificContext());
if (client != NULL_PTR(BasicTCPSocket *)) {
const uint32 BUFFER_SIZE = 1024u;
char8 buffer[BUFFER_SIZE];
uint32 readBytes = BUFFER_SIZE;
MemoryOperationsHelper::Set(&buffer[0], '\0', BUFFER_SIZE);
if (client->Read(&buffer[0], readBytes)) {
StreamString configurationCfg = buffer;
REPORT_ERROR(ErrorManagement::ParametersError, "Received configuration message [size=%d]:%s", readBytes, configurationCfg.Buffer());
//Try to parse the configuration message
StreamString err;
//Force the string to be seeked to the beginning.
configurationCfg.Seek(0LLU);
ConfigurationDatabase msgCdb;
StandardParser parser(configurationCfg, msgCdb, &err);
ReferenceT<Message> msg(GlobalObjectsDatabase::Instance()->GetStandardHeap());
ErrorManagement::ErrorType msgError;
msgError.parametersError = !parser.Parse();
if (msgError.ErrorsCleared()) {
//After parsing the tree is pointing at the last leaf
msgCdb.MoveToRoot();
msgError.parametersError = !msg->Initialise(msgCdb);
if (!msgError.ErrorsCleared()) {
REPORT_ERROR(ErrorManagement::ParametersError, "Failed to initialise message");
}
}
else {
StreamString errPrint;
errPrint.Printf("Failed to parse %s", err.Buffer());
REPORT_ERROR(ErrorManagement::ParametersError, errPrint.Buffer());
}
if (msgError.ErrorsCleared()) {
msgError = MessageI::SendMessage(msg, this);
if (!msgError.ErrorsCleared()) {
REPORT_ERROR(ErrorManagement::ParametersError, "Error while sending message to destination %s with function %s",
msg->GetDestination().GetList(), msg->GetFunction().GetList());
}
}
readBytes = BUFFER_SIZE;
}
if (!client->Close()) {
REPORT_ERROR(ErrorManagement::ParametersError, "Failed to Close client connection");
}
delete client;
}
return MARTe::ErrorManagement::Completed;
}
return err;
}
CLASS_REGISTER(TCPSocketMessageProxyExample, "")
}
|
Start the application with the -m parameter.
In order to change state, start the application and, in another console, type echo -e "Destination=StateMachine\nFunction=GOTOSTATE2" | nc 127.0.0.1 24680
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | +TCPMessageProxy = {
Class = TCPSocketMessageProxyExample
Port = 24680
}
+StateMachine = {
Class = StateMachine
+INITIAL = {
Class = ReferenceContainer
+START = {
Class = StateMachineEvent
NextState = "STATE1"
NextStateError = "ERROR"
Timeout = 0
+ChangeToState1Msg = {
Class = Message
Destination = TestApp
Mode = ExpectsReply
Function = PrepareNextState
+Parameters = {
Class = ConfigurationDatabase
param1 = State1
}
}
+StartNextStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StartNextStateExecution
Mode = ExpectsReply
}
}
}
+STATE1 = {
Class = ReferenceContainer
+GOTOSTATE2 = {
Class = StateMachineEvent
NextState = "STATE2"
NextStateError = "ERROR"
Timeout = 0
+PrepareChangeToState2Msg = {
Class = Message
Destination = TestApp
Mode = ExpectsReply
Function = PrepareNextState
+Parameters = {
Class = ConfigurationDatabase
param1 = State2
}
}
+StopCurrentStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StopCurrentStateExecution
Mode = ExpectsReply
}
+StartNextStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StartNextStateExecution
Mode = ExpectsReply
}
}
+ERROR = {
Class = StateMachineEvent
NextState = "ERROR"
NextStateError = "ERROR"
}
}
+STATE2 = {
Class = ReferenceContainer
+GOTOSTATE1 = {
Class = StateMachineEvent
NextState = "STATE1"
NextStateError = "ERROR"
Timeout = 0
+PrepareChangeToState1Msg = {
Class = Message
Destination = TestApp
Mode = ExpectsReply
Function = PrepareNextState
+Parameters = {
Class = ConfigurationDatabase
param1 = State1
}
}
+StopCurrentStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StopCurrentStateExecution
Mode = ExpectsReply
}
+StartNextStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StartNextStateExecution
Mode = ExpectsReply
}
}
+ERROR = {
Class = StateMachineEvent
NextState = "ERROR"
NextStateError = "ERROR"
}
}
+ERROR = {
Class = ReferenceContainer
+ENTER = {
Class = ReferenceContainer
+StopCurrentStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StopCurrentStateExecution
Mode = ExpectsReply
}
+PrepareChangeToErrorMsg = {
Class = Message
Destination = TestApp
Mode = ExpectsReply
Function = PrepareNextState
+Parameters = {
Class = ConfigurationDatabase
param1 = StateError
}
}
+StartNextStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StartNextStateExecution
Mode = ExpectsReply
}
}
+RESET = {
Class = StateMachineEvent
NextState = "STATE1"
NextStateError = "STATE1"
Timeout = 0
+StopCurrentStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StopCurrentStateExecution
Mode = ExpectsReply
}
+PrepareChangeToState1Msg = {
Class = Message
Destination = TestApp
Mode = ExpectsReply
Function = PrepareNextState
+Parameters = {
Class = ConfigurationDatabase
param1 = State1
}
}
+StartNextStateExecutionMsg = {
Class = Message
Destination = TestApp
Function = StartNextStateExecution
Mode = ExpectsReply
}
}
}
}
$TestApp = {
Class = RealTimeApplication
+Functions = {
Class = ReferenceContainer
+GAMTimer = {
Class = IOGAM
InputSignals = {
Counter = {
DataSource = Timer
Type = uint32
}
Time = {
Frequency = 1
DataSource = Timer
Type = uint32
}
}
OutputSignals = {
Counter = {
DataSource = DDB1
Type = uint32
}
Time = {
DataSource = DDB1
Type = uint32
}
}
}
+GAMVariable1 = {
Class = VariableGAMExample1
Gains = {2, 3, 4}
InputSignals = {
Counter = {
DataSource = DDB1
Type = uint32
}
}
OutputSignals = {
GainCounter1Thread1 = {
DataSource = DDB1
Type = uint32
}
GainCounter2Thread1 = {
DataSource = DDB1
Type = uint32
}
GainCounter3Thread1 = {
DataSource = DDB1
Type = uint32
}
}
}
+GAMT1TSynchOut = {
Class = IOGAM
InputSignals = {
GainCounter1Thread1 = {
DataSource = DDB1
Type = uint32
}
GainCounter2Thread1 = {
DataSource = DDB1
Type = uint32
}
GainCounter3Thread1 = {
DataSource = DDB1
Type = uint32
}
}
OutputSignals = {
GainCounter1Thread1 = {
DataSource = RTThreadSynch
Type = uint32
}
GainCounter2Thread1 = {
DataSource = RTThreadSynch
Type = uint32
}
GainCounter3Thread1 = {
DataSource = RTThreadSynch
Type = uint32
}
}
}
+GAMT1T2Interface = {
Class = IOGAM
InputSignals = {
GainCounter1Thread1 = {
DataSource = RTThreadSynch
Type = uint32
Samples = 2 //Run at half the frequency of thread 1
}
GainCounter2Thread1 = {
DataSource = RTThreadSynch
Type = uint32
Samples = 2 //Run at half the frequency of thread 1
}
GainCounter3Thread1 = {
DataSource = RTThreadSynch
Type = uint32
Samples = 2 //Run at half the frequency of thread 1
}
}
OutputSignals = {
GainCounter1Thread2 = {
DataSource = DDB1
Type = uint32
Samples = 1
NumberOfDimensions = 1
NumberOfElements = 2 //2 elements for each cycle (as it waits for 2 samples)
}
GainCounter2Thread2 = {
DataSource = DDB1
Type = uint32
Samples = 1
NumberOfDimensions = 1
NumberOfElements = 2 //2 elements for each cycle (as it waits for 2 samples)
}
GainCounter3Thread2 = {
DataSource = DDB1
Type = uint32
Samples = 1
NumberOfDimensions = 1
NumberOfElements = 2 //2 elements for each cycle (as it waits for 2 samples)
}
}
}
+GAMT1T3Interface = {
Class = IOGAM
InputSignals = {
GainCounter1Thread1 = {
DataSource = RTThreadSynch
Type = uint32
Samples = 4 //Run at one quarter of the frequency of thread 1
}
GainCounter2Thread1 = {
DataSource = RTThreadSynch
Type = uint32
Samples = 4 //Run at one quarter the frequency of thread 1
}
GainCounter3Thread1 = {
DataSource = RTThreadSynch
Type = uint32
Samples = 4 //Run at one quarter the frequency of thread 1
}
}
OutputSignals = {
GainCounter1Thread3 = {
DataSource = DDB1
Type = uint32
Samples = 1
NumberOfDimensions = 1
NumberOfElements = 4 //4 elements for each cycle (as it waits for 4 samples)
}
GainCounter2Thread3 = {
DataSource = DDB1
Type = uint32
Samples = 1
NumberOfDimensions = 1
NumberOfElements = 4 //4 elements for each cycle (as it waits for 4 samples)
}
GainCounter3Thread3 = {
DataSource = DDB1
Type = uint32
Samples = 1
NumberOfDimensions = 1
NumberOfElements = 4 //4 elements for each cycle (as it waits for 4 samples)
}
}
}
+GAMDisplayThread1 = {
Class = IOGAM
InputSignals = {
Counter = {
DataSource = DDB1
Type = uint32
}
GainCounter1Thread1 = {
DataSource = DDB1
Type = uint32
}
GainCounter2Thread1 = {
DataSource = DDB1
Type = uint32
}
GainCounter3Thread1 = {
DataSource = DDB1
Type = uint32
}
}
OutputSignals = {
Counter = {
DataSource = LoggerDataSource
Type = uint32
}
GainCounter1Thread1 = {
DataSource = LoggerDataSource
Type = uint32
}
GainCounter2Thread1 = {
DataSource = LoggerDataSource
Type = uint32
}
GainCounter3Thread1 = {
DataSource = LoggerDataSource
Type = uint32
}
}
}
+GAMDisplayThread2 = {
Class = IOGAM
InputSignals = {
GainCounter1Thread2 = {
DataSource = DDB1
Type = uint32
}
GainCounter2Thread2 = {
DataSource = DDB1
Type = uint32
}
GainCounter3Thread2 = {
DataSource = DDB1
Type = uint32
}
}
OutputSignals = {
GainCounter1Thread2 = {
DataSource = LoggerDataSource
Type = uint32
NumberOfDimensions = 1
NumberOfElements = 2
}
GainCounter2Thread2 = {
DataSource = LoggerDataSource
Type = uint32
NumberOfDimensions = 1
NumberOfElements = 2
}
GainCounter3Thread2 = {
DataSource = LoggerDataSource
Type = uint32
NumberOfDimensions = 1
NumberOfElements = 2
}
}
}
+GAMDisplayThread3 = {
Class = IOGAM
InputSignals = {
GainCounter1Thread3 = {
DataSource = DDB1
Type = uint32
}
GainCounter2Thread3 = {
DataSource = DDB1
Type = uint32
}
GainCounter3Thread3 = {
DataSource = DDB1
Type = uint32
}
}
OutputSignals = {
GainCounter1Thread3 = {
DataSource = LoggerDataSource
Type = uint32
NumberOfDimensions = 1
NumberOfElements = 4
}
GainCounter2Thread3 = {
DataSource = LoggerDataSource
Type = uint32
NumberOfDimensions = 1
NumberOfElements = 4
}
GainCounter3Thread3 = {
DataSource = LoggerDataSource
Type = uint32
NumberOfDimensions = 1
NumberOfElements = 4
}
}
}
}
+Data = {
Class = ReferenceContainer
DefaultDataSource = DDB1
+DDB1 = {
Class = GAMDataSource
}
+LoggerDataSource = {
Class = LoggerDataSource
}
+Timings = {
Class = TimingDataSource
}
+RTThreadSynch = {
Class = RealTimeThreadSynchronisation
Timeout = 5000 //Timeout in ms to wait for the thread to cycle.
}
+Timer = {
Class = LinuxTimer
SleepNature = "Default"
Signals = {
Counter = {
Type = uint32
}
Time = {
Type = uint32
}
}
}
}
+States = {
Class = ReferenceContainer
+State1 = {
Class = RealTimeState
+Threads = {
Class = ReferenceContainer
+Thread1 = {
Class = RealTimeThread
CPUs = 0x1
Functions = {GAMTimer GAMVariable1 GAMT1TSynchOut GAMDisplayThread1}
}
}
}
+State2 = {
Class = RealTimeState
+Threads = {
Class = ReferenceContainer
+Thread1 = {
Class = RealTimeThread
CPUs = 0x1
Functions = {GAMTimer GAMVariable1 GAMT1TSynchOut GAMDisplayThread1}
}
+Thread2 = {
Class = RealTimeThread
CPUs = 0x2
Functions = {GAMT1T2Interface GAMDisplayThread2}
}
+Thread3 = {
Class = RealTimeThread
CPUs = 0x4
Functions = {GAMT1T3Interface GAMDisplayThread3}
}
}
}
+StateError = {
Class = RealTimeState
+Threads = {
Class = ReferenceContainer
+Thread1 = {
Class = RealTimeThread
CPUs = 0x1
Functions = {GAMTimer}
}
}
}
}
+Scheduler = {
Class = GAMScheduler
TimingDataSource = Timings
}
}
|
Instructions on how to compile and execute the examples can be found here.