Services

In order to promote uniformity in the management of threads, and in particular of the thread initialisation and destruction processes, the framework offers a thread service abstraction (see EmbeddedServiceI).

The following use-cases are covered: single-thread, multi-thread (each concurring for the same resource) and client oriented connection (e.g. web server).

The callback function (called by the service) shall have the following prototype: (MARTe::ErrorManagement::ErrorType (*)(MARTe::EmbeddedServiceI::ExecutionInfo &)). The name of the callback function is registered by implementing the EmbeddedServiceMethodBinderT interface.

All service implementations will continuously call the callback function with a given state (represented by the input ExecutionInfo). The service will act accordingly to the returned value (see below).

Note

The callback function shall avoid blocking the execution and return as soon as possible.

Any of the EmbeddedServices offers a Start and a Stop method. The latter guarantees that the thread is killed if it not gracefully terminated by the application with-in a given timeout period.

All the thread parameters (affinity, stack, number of threads, …) can be changed using the specific service API or using the standard Initialise method.

SingleThreadService

The SingleThreadService commands an EmbeddedThread which in turn continuously call the registered callback function with one of the stages set below.

../../_images/SingleThreadService-1.png

Depending on the callback return value, the ExecutionInfo stage of each callback call is set as follows:

Stage

Condition(s)

StartupStage

After SingleThreadService::Start().

If the callback returns an ErrorType which is not NoError and SingleThreadService::Stop() was not called.

MainStage

Until SingleThreadService::Stop() is called or if the callback returns an ErrorType which is not NoError.

TerminationStage

If the callback returns an ErrorType which is ErrorManagement::Completed.

BadTerminationStage

If the callback returns an ErrorType which is not ErrorManagement::Completed or if SingleThreadService::Stop() was called.

AsyncTerminationStage

If the thread was killed after trying to gracefully terminate with a SingleThreadService::Stop().

The first time the SingleThreadService::Stop() is called, the EmbeddedThread will wait for the callback function to return and will call it one last time with the ExecutionInfo stage set to BadTerminationStage.

If, in the meanwhile, the SingleThreadService::Stop() is called a second time, the thread will be killed (see Kill in the Threads API) and the callback will be (asynchronously) called with the ExecutionInfo stage set to AsyncTerminationStage.

Warning

The service can only be killed if a finite timeout was configured, otherwise it will wait forever to be gracefully stopped.

MultiThreadService

The MultiThreadService offers an equivalent function to the EmbeddedServiceI with one or more threads. The threads will concurrently call the callback function.

../../_images/MultiThreadService-1.png

MultiClientService

The MultiClientService is a connection oriented implementation of the service described above. In particular the GetStageSpecific of the ExecutionInfo is used to trigger connection oriented events:

StageSpecific

Condition(s)

WaitRequestStageSpecific

Wait for a connection request.

ServiceRequestStageSpecific

Serve a specific request.

../../_images/MultiClientService-1.png

The number of threads is allowed to be increased/decreased by the service between the values defined by GetMinimumNumberOfPoolThreads () and GetMaximumNumberOfPoolThreads ().

Note

The callback should not block and should return ErrorManagement::Timeout while awaiting for a connection to be established. After a connection is established (ServiceRequestStageSpecific) the callback shall return ErrorManagement::Completed when the service has been completed.

Examples

SingleThreadService

The following is an example which highlights all the possible ExecutionInfo callback stages.

Example of a SingleThreadService
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/**
 * @file SingleThreadServiceExample1.cpp
 * @brief Source file for class SingleThreadServiceExample1
 * @date 24/04/2018
 * @author Andre Neto
 *
 * @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
 * the Development of Fusion Energy ('Fusion for Energy').
 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved
 * by the European Commission - subsequent versions of the EUPL (the "Licence")
 * You may not use this work except in compliance with the Licence.
 * You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
 *
 * @warning Unless required by applicable law or agreed to in writing, 
 * software distributed under the Licence is distributed on an "AS IS"
 * basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the Licence permissions and limitations under the Licence.

 * @details This source file contains the definition of all the methods for
 * the class SingleThreadServiceExample1 (public, protected, and private). Be aware that some
 * methods, such as those inline could be defined on the header file, instead.
 */
#define DLL_API
/*---------------------------------------------------------------------------*/
/*                         Standard header includes                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/*                         Project header includes                           */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "BasicTCPSocket.h"
#include "ConfigurationDatabase.h"
#include "ErrorLoggerExample.h"
#include "EmbeddedServiceMethodBinderT.h"
#include "ObjectRegistryDatabase.h"
#include "StandardParser.h"
#include "SingleThreadService.h"

/*---------------------------------------------------------------------------*/
/*                           Static definitions                              */
/*---------------------------------------------------------------------------*/

namespace MARTe2Tutorial {
/**
 * @brief a class that contains a single thread service with an embedded binder.
 */
class SingleThreadServiceExample1: public MARTe::Object, public MARTe::EmbeddedServiceMethodBinderT<SingleThreadServiceExample1> {

public:
    CLASS_REGISTER_DECLARATION()SingleThreadServiceExample1() :
    MARTe::Object(), MARTe::EmbeddedServiceMethodBinderT<SingleThreadServiceExample1>(*this, &SingleThreadServiceExample1::ThreadCallback), service(
            *this) {
        counter = 0u;
    }

    virtual ~SingleThreadServiceExample1() {
        using namespace MARTe;
        if (GetName() != NULL) {
            REPORT_ERROR_STATIC(ErrorManagement::Information, "No more references "
                    "pointing at %s [%s]. The Object will "
                    "be safely deleted.",
                    GetName(), GetClassProperties()->GetName());
        }
    }

    virtual bool Initialise(MARTe::StructuredDataI &data) {
        bool ok = MARTe::Object::Initialise(data);
        if (ok) {
            ok = service.Initialise(data);
        }
        return ok;
    }

    MARTe::ErrorManagement::ErrorType ThreadCallback(MARTe::ExecutionInfo &info) {
        using namespace MARTe;
        ErrorManagement::ErrorType err;
        if (info.GetStage() == ExecutionInfo::StartupStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::StartupStage");
        }
        else if (info.GetStage() == ExecutionInfo::MainStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::MainStage");
            if (counter == 0u) {
                err = ErrorManagement::Completed;
            }
            else {
                err = ErrorManagement::FatalError;
            }
        }
        else if (info.GetStage() == ExecutionInfo::TerminationStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::TerminationStage");
            err = ErrorManagement::NoError;
            counter++;
        }
        else if (info.GetStage() == ExecutionInfo::BadTerminationStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::BadTerminationStage");
            counter++;
            //Simulate error to force killing
            while (true) {
                Sleep::Sec(0.2);
            }
        }
        else if (info.GetStage() == ExecutionInfo::AsyncTerminationStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::AsyncTerminationStage");
            err = ErrorManagement::NoError;
        }
        Sleep::Sec(0.2);
        return err;
    }

    MARTe::SingleThreadService service;
    MARTe::uint32 counter;
};

CLASS_REGISTER(SingleThreadServiceExample1, "")
}

/*---------------------------------------------------------------------------*/
/*                           Method definitions                              */
/*---------------------------------------------------------------------------*/

int main(int argc, char **argv) {
    using namespace MARTe;
    using namespace MARTe2Tutorial;
    SetErrorProcessFunction(&ErrorProcessExampleFunction);

    StreamString configurationCfg = ""
            "+SingleThreadServiceExample1 = {\n"
            "    Class = SingleThreadServiceExample1\n"
            "    Timeout = 100\n" //100 ms
            "    CPUMask = 0x1\n"
            "}";

    REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading CFG:\n%s", configurationCfg.Buffer());
    ConfigurationDatabase cdb;
    StreamString err;
    //Force the string to be seeked to the beginning.
    configurationCfg.Seek(0LLU);
    StandardParser parser(configurationCfg, cdb, &err);
    bool ok = parser.Parse();
    ObjectRegistryDatabase *ord = ObjectRegistryDatabase::Instance();
    if (ok) {
        //After parsing the tree is pointing at the last leaf
        cdb.MoveToRoot();
        ok = ord->Initialise(cdb);
    }
    else {
        StreamString errPrint;
        errPrint.Printf("Failed to parse %s", err.Buffer());
        REPORT_ERROR_STATIC(ErrorManagement::ParametersError, errPrint.Buffer());
    }

    ReferenceT<SingleThreadServiceExample1> singleThreadService;
    if (ok) {
        singleThreadService = ord->Find("SingleThreadServiceExample1");
        ok = singleThreadService.IsValid();
    }
    if (ok) {
        singleThreadService->service.Start();
        while (singleThreadService->counter != 2) {
            Sleep::Sec(0.2);
        }
        singleThreadService->service.Stop();
        Sleep::Sec(0.2);
        //Kill the service
        singleThreadService->service.Stop();
    }
    //Purge all the Objects!
    ObjectRegistryDatabase::Instance()->Purge();
    return 0;
}

MultiThreadService

This is an example similar to the above but with a MultiThreadService.

Example of a MultiThreadService
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/**
 * @file MultiThreadServiceExample1.cpp
 * @brief Source file for class MultiThreadServiceExample1
 * @date 24/04/2018
 * @author Andre Neto
 *
 * @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
 * the Development of Fusion Energy ('Fusion for Energy').
 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved
 * by the European Commission - subsequent versions of the EUPL (the "Licence")
 * You may not use this work except in compliance with the Licence.
 * You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
 *
 * @warning Unless required by applicable law or agreed to in writing, 
 * software distributed under the Licence is distributed on an "AS IS"
 * basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the Licence permissions and limitations under the Licence.

 * @details This source file contains the definition of all the methods for
 * the class MultiThreadServiceExample1 (public, protected, and private). Be aware that some
 * methods, such as those inline could be defined on the header file, instead.
 */
#define DLL_API
/*---------------------------------------------------------------------------*/
/*                         Standard header includes                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/*                         Project header includes                           */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "BasicTCPSocket.h"
#include "ConfigurationDatabase.h"
#include "ErrorLoggerExample.h"
#include "EmbeddedServiceMethodBinderT.h"
#include "ObjectRegistryDatabase.h"
#include "StandardParser.h"
#include "MultiThreadService.h"

/*---------------------------------------------------------------------------*/
/*                           Static definitions                              */
/*---------------------------------------------------------------------------*/

namespace MARTe2Tutorial {
/**
 * @brief a class that contains a single thread service with an embedded binder.
 */
class MultiThreadServiceExample1: public MARTe::Object, public MARTe::EmbeddedServiceMethodBinderT<MultiThreadServiceExample1> {

public:
    CLASS_REGISTER_DECLARATION()
    MultiThreadServiceExample1() :
    MARTe::Object(), MARTe::EmbeddedServiceMethodBinderT<MultiThreadServiceExample1>(*this, &MultiThreadServiceExample1::ThreadCallback), service(
            *this) {
        counter = NULL;
    }

    virtual ~MultiThreadServiceExample1() {
        using namespace MARTe;
        if (GetName() != NULL) {
            REPORT_ERROR_STATIC(ErrorManagement::Information, "No more references "
                    "pointing at %s [%s]. The Object will "
                    "be safely deleted.",
                    GetName(), GetClassProperties()->GetName());
        }
        delete counter;
    }

    virtual bool Initialise(MARTe::StructuredDataI &data) {
        bool ok = MARTe::Object::Initialise(data);
        if (ok) {
            ok = service.Initialise(data);
        }
        if (ok) {
            counter = new MARTe::uint32[service.GetNumberOfPoolThreads()];
            MARTe::uint32 n;
            for (n=0u; n<service.GetNumberOfPoolThreads(); n++) {
                counter[n] = 0u;
            }
        }
        return ok;
    }

    MARTe::ErrorManagement::ErrorType ThreadCallback(MARTe::ExecutionInfo &info) {
        using namespace MARTe;
        ErrorManagement::ErrorType err;
        if (info.GetStage() == ExecutionInfo::StartupStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::StartupStage");
        }
        else if (info.GetStage() == ExecutionInfo::MainStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::MainStage");
            if (counter[info.GetThreadNumber()] == 0u) {
                err = ErrorManagement::Completed;
            }
            else {
                err = ErrorManagement::FatalError;
            }
        }
        else if (info.GetStage() == ExecutionInfo::TerminationStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::TerminationStage");
            err = ErrorManagement::NoError;
            counter[info.GetThreadNumber()]++;
        }
        else if (info.GetStage() == ExecutionInfo::BadTerminationStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::BadTerminationStage");
            counter[info.GetThreadNumber()]++;
            //Simulate error to force killing
            while (true) {
                Sleep::Sec(0.2);
            }
        }
        else if (info.GetStage() == ExecutionInfo::AsyncTerminationStage) {
            REPORT_ERROR(ErrorManagement::Information, "Callback called with ExecutionInfo::AsyncTerminationStage");
            err = ErrorManagement::NoError;
        }
        Sleep::Sec(0.2);
        return err;
    }

    MARTe::MultiThreadService service;
    MARTe::uint32 *counter;
};

CLASS_REGISTER(MultiThreadServiceExample1, "")
}

/*---------------------------------------------------------------------------*/
/*                           Method definitions                              */
/*---------------------------------------------------------------------------*/

int main(int argc, char **argv) {
    using namespace MARTe;
    using namespace MARTe2Tutorial;
    SetErrorProcessFunction(&ErrorProcessExampleFunction);

    StreamString configurationCfg = ""
            "+MultiThreadServiceExample1 = {\n"
            "    Class = MultiThreadServiceExample1\n"
            "    NumberOfPoolThreads = 3\n"
            "    Timeout = 100\n" //100 ms
            "    CPUMask = 0x1\n"
            "}";

    REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading CFG:\n%s", configurationCfg.Buffer());
    ConfigurationDatabase cdb;
    StreamString err;
    //Force the string to be seeked to the beginning.
    configurationCfg.Seek(0LLU);
    StandardParser parser(configurationCfg, cdb, &err);
    bool ok = parser.Parse();
    ObjectRegistryDatabase *ord = ObjectRegistryDatabase::Instance();
    if (ok) {
        //After parsing the tree is pointing at the last leaf
        cdb.MoveToRoot();
        ok = ord->Initialise(cdb);
    }
    else {
        StreamString errPrint;
        errPrint.Printf("Failed to parse %s", err.Buffer());
        REPORT_ERROR_STATIC(ErrorManagement::ParametersError, errPrint.Buffer());
    }

    ReferenceT<MultiThreadServiceExample1> multiThreadService;
    if (ok) {
        multiThreadService = ord->Find("MultiThreadServiceExample1");
        ok = multiThreadService.IsValid();
    }
    if (ok) {
        multiThreadService->service.Start();
        uint32 n;
        for (n=0u; n<multiThreadService->service.GetNumberOfPoolThreads(); n++) {
            while (multiThreadService->counter[n] != 2) {
                Sleep::Sec(0.2);
            }
        }
        multiThreadService->service.Stop();
        Sleep::Sec(0.2);
        //Kill the service
        multiThreadService->service.Stop();
    }
    //Purge all the Objects!
    ObjectRegistryDatabase::Instance()->Purge();
    return 0;
}

MultiClientService

The custom component TCPSocketMessageProxyExample forwards TCP messages into MARTe messages.

Example of a MultiClientService
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/**
 * @file TCPSocketMessageProxyExample.cpp
 * @brief Source file for class TCPSocketMessageProxyExample
 * @date 13/04/2018
 * @author Andre Neto
 *
 * @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
 * the Development of Fusion Energy ('Fusion for Energy').
 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved
 * by the European Commission - subsequent versions of the EUPL (the "Licence")
 * You may not use this work except in compliance with the Licence.
 * You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
 *
 * @warning Unless required by applicable law or agreed to in writing, 
 * software distributed under the Licence is distributed on an "AS IS"
 * basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the Licence permissions and limitations under the Licence.

 * @details This source file contains the definition of all the methods for
 * the class TCPSocketMessageProxyExample (public, protected, and private). Be aware that some 
 * methods, such as those inline could be defined on the header file, instead.
 */
#define DLL_API
/*---------------------------------------------------------------------------*/
/*                         Standard header includes                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/*                         Project header includes                           */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "ConfigurationDatabase.h"
#include "Message.h"
#include "MessageI.h"
#include "StandardParser.h"
#include "TCPSocketMessageProxyExample.h"

/*---------------------------------------------------------------------------*/
/*                           Static definitions                              */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/*                           Method definitions                              */
/*---------------------------------------------------------------------------*/

namespace MARTe2Tutorial {

TCPSocketMessageProxyExample::TCPSocketMessageProxyExample() :
        MARTe::Object(), MARTe::EmbeddedServiceMethodBinderI(), tcpClientService(*this) {
    waitForConnection = true;
    mux.Create();
    timeout = 10;

}

TCPSocketMessageProxyExample::~TCPSocketMessageProxyExample() {
    using namespace MARTe;
    if (tcpClientService.Stop() != ErrorManagement::NoError) {
        if (tcpClientService.Stop() != ErrorManagement::NoError) {
            REPORT_ERROR(ErrorManagement::Warning, "Could not Stop the tcpThreadService");
        }
    }
    mux.UnLock();
    mux.Close();
    if (!socket.Close()) {
        REPORT_ERROR(ErrorManagement::Warning, "Could not Close the socket");
    }
}

bool TCPSocketMessageProxyExample::Initialise(MARTe::StructuredDataI & data) {
    using namespace MARTe;
    uint32 port;
    bool ok = Object::Initialise(data);
    if (ok) {
        ok = data.Read("Port", port);
        if (!ok) {
            REPORT_ERROR(ErrorManagement::ParametersError, "Could not Read the Port parameter");
        }
    }
    if (ok) {
        ok = socket.Open();
        if (!ok) {
            REPORT_ERROR(ErrorManagement::ParametersError, "Could not Open server socket");
        }
    }
    if (ok) {
        ok = socket.Listen(port);
        if (!ok) {
            REPORT_ERROR(ErrorManagement::ParametersError, "Could not Listen on port %d", port);
        }
    }
    if (ok) {
        tcpClientService.SetName(GetName());
        ok = (tcpClientService.Start() == ErrorManagement::NoError);
        if (!ok) {
            REPORT_ERROR(ErrorManagement::ParametersError, "Could not Start tcpClientService");
        }
    }
    if (ok) {
        REPORT_ERROR(ErrorManagement::Information, "Server listening in port %d", port);
    }
    return ok;
}

MARTe::ErrorManagement::ErrorType TCPSocketMessageProxyExample::Execute(MARTe::ExecutionInfo & info) {
    using namespace MARTe;
    ErrorManagement::ErrorType err;

    if (info.GetStageSpecific() == MARTe::ExecutionInfo::WaitRequestStageSpecific) {
        mux.Lock();
        if (waitForConnection) {
            waitForConnection = false;
            mux.UnLock();
            BasicTCPSocket *client = socket.WaitConnection(timeout);
            if (client != NULL_PTR(BasicTCPSocket *)) {
                REPORT_ERROR(ErrorManagement::Information, "Connection accepted!");
                mux.Lock();
                waitForConnection = true;
                info.SetThreadSpecificContext(reinterpret_cast<void *>(client));
                err = ErrorManagement::NoError;
                mux.UnLock();
            }
            else {
                mux.Lock();
                waitForConnection = true;
                err = ErrorManagement::Timeout;
                mux.UnLock();
            }
        }
        else {
            mux.UnLock();
            MARTe::Sleep::MSec(timeout);
            err = ErrorManagement::Timeout;
        }
    }
    if (info.GetStageSpecific() == MARTe::ExecutionInfo::ServiceRequestStageSpecific) {
        BasicTCPSocket *client = reinterpret_cast<BasicTCPSocket *>(info.GetThreadSpecificContext());
        if (client != NULL_PTR(BasicTCPSocket *)) {
            const uint32 BUFFER_SIZE = 1024u;
            char8 buffer[BUFFER_SIZE];
            uint32 readBytes = BUFFER_SIZE;
            MemoryOperationsHelper::Set(&buffer[0], '\0', BUFFER_SIZE);
            if (client->Read(&buffer[0], readBytes)) {
                StreamString configurationCfg = buffer;
                REPORT_ERROR(ErrorManagement::ParametersError, "Received configuration message [size=%d]:%s", readBytes, configurationCfg.Buffer());
                //Try to parse the configuration message
                StreamString err;
                //Force the string to be seeked to the beginning.
                configurationCfg.Seek(0LLU);
                ConfigurationDatabase msgCdb;
                StandardParser parser(configurationCfg, msgCdb, &err);
                ReferenceT<Message> msg(GlobalObjectsDatabase::Instance()->GetStandardHeap());
                ErrorManagement::ErrorType msgError;
                msgError.parametersError = !parser.Parse();
                if (msgError.ErrorsCleared()) {
                    //After parsing the tree is pointing at the last leaf
                    msgCdb.MoveToRoot();
                    msgError.parametersError = !msg->Initialise(msgCdb);
                    if (!msgError.ErrorsCleared()) {
                        REPORT_ERROR(ErrorManagement::ParametersError, "Failed to initialise message");
                    }
                }
                else {
                    StreamString errPrint;
                    errPrint.Printf("Failed to parse %s", err.Buffer());
                    REPORT_ERROR(ErrorManagement::ParametersError, errPrint.Buffer());
                }
                if (msgError.ErrorsCleared()) {
                    msgError = MessageI::SendMessage(msg, this);
                    if (!msgError.ErrorsCleared()) {
                        REPORT_ERROR(ErrorManagement::ParametersError, "Error while sending message to destination %s with function %s",
                                     msg->GetDestination().GetList(), msg->GetFunction().GetList());
                    }
                }
                readBytes = BUFFER_SIZE;
            }
            if (!client->Close()) {
                REPORT_ERROR(ErrorManagement::ParametersError, "Failed to Close client connection");
            }
            delete client;
        }
        return MARTe::ErrorManagement::Completed;
    }
    return err;
}

CLASS_REGISTER(TCPSocketMessageProxyExample, "")
}

Start the application with the -m parameter.

In order to change state, start the application and, in another console, type echo -e "Destination=StateMachine\nFunction=GOTOSTATE2" | nc 127.0.0.1 24680.

Multiple states configuration (Run with NAME_OF_THE_MESSAGE=StateMachine:START and NAME_OF_THE_CONFIGURATION_FILE=RTApp-3.cfg)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
+TCPMessageProxy = {
    Class = TCPSocketMessageProxyExample
    Port = 24680
}
+StateMachine = {
    Class = StateMachine
    +INITIAL = {
        Class = ReferenceContainer
        +START = {
            Class = StateMachineEvent
            NextState = "STATE1"
            NextStateError = "ERROR"
            Timeout = 0
            +ChangeToState1Msg = {
                Class = Message
                Destination = TestApp
                Mode = ExpectsReply
                Function = PrepareNextState
                +Parameters = {
                    Class = ConfigurationDatabase
                    param1 = State1
                }
            }
            +StartNextStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StartNextStateExecution
                Mode = ExpectsReply
            }
        }
    }
    +STATE1 = {
        Class = ReferenceContainer
        +GOTOSTATE2 = {
            Class = StateMachineEvent
            NextState = "STATE2"
            NextStateError = "ERROR"
            Timeout = 0
            +PrepareChangeToState2Msg = {
                Class = Message
                Destination = TestApp
                Mode = ExpectsReply
                Function = PrepareNextState
                +Parameters = {
                    Class = ConfigurationDatabase
                    param1 = State2
                }
            }
            +StopCurrentStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StopCurrentStateExecution
                Mode = ExpectsReply
            }
            +StartNextStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StartNextStateExecution
                Mode = ExpectsReply
            }
        }
        +ERROR = {
            Class = StateMachineEvent
            NextState = "ERROR"
            NextStateError = "ERROR"
        }
    }
    +STATE2 = {
        Class = ReferenceContainer
        +GOTOSTATE1 = {
            Class = StateMachineEvent
            NextState = "STATE1"
            NextStateError = "ERROR"
            Timeout = 0
            +PrepareChangeToState1Msg = {
                Class = Message
                Destination = TestApp
                Mode = ExpectsReply
                Function = PrepareNextState
                +Parameters = {
                    Class = ConfigurationDatabase
                    param1 = State1
                }
            }
            +StopCurrentStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StopCurrentStateExecution
                Mode = ExpectsReply
            }
            +StartNextStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StartNextStateExecution
                Mode = ExpectsReply
            }
        }
        +ERROR = {
            Class = StateMachineEvent
            NextState = "ERROR"
            NextStateError = "ERROR"
        }
    }
    +ERROR = {
        Class = ReferenceContainer
        +ENTER = {
            Class = ReferenceContainer
            +StopCurrentStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StopCurrentStateExecution
                Mode = ExpectsReply
            }
            +PrepareChangeToErrorMsg = {
                Class = Message
                Destination = TestApp
                Mode = ExpectsReply
                Function = PrepareNextState
                +Parameters = {
                    Class = ConfigurationDatabase
                    param1 = StateError
                }
            }
            +StartNextStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StartNextStateExecution
                Mode = ExpectsReply
            }
        }
        +RESET = {
            Class = StateMachineEvent
            NextState = "STATE1"
            NextStateError = "STATE1"
            Timeout = 0
            +StopCurrentStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StopCurrentStateExecution
                Mode = ExpectsReply
            }
            +PrepareChangeToState1Msg = {
                Class = Message
                Destination = TestApp
                Mode = ExpectsReply
                Function = PrepareNextState
                +Parameters = {
                    Class = ConfigurationDatabase
                    param1 = State1
                }
            }
            +StartNextStateExecutionMsg = {
                Class = Message
                Destination = TestApp
                Function = StartNextStateExecution
                Mode = ExpectsReply
            }
        }
    }
}
$TestApp = {
    Class = RealTimeApplication
    +Functions = {
        Class = ReferenceContainer
        +GAMTimer = {
            Class = IOGAM
            InputSignals = {
                Counter = {
                    DataSource = Timer
                    Type = uint32
                }
                Time = {
                    Frequency = 1
                    DataSource = Timer
                    Type = uint32
                }
            }
            OutputSignals = {
                Counter = {
                    DataSource = DDB1
                    Type = uint32
                }
                Time = {
                    DataSource = DDB1
                    Type = uint32
                }
            }
        }
        +GAMVariable1 = {
            Class = VariableGAMExample1
            Gains = {2, 3, 4}
            InputSignals = {
                Counter = {
                    DataSource = DDB1
                    Type = uint32
                }                
            }
            OutputSignals = {
                GainCounter1Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter2Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter3Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }                
            }
        }
        +GAMT1TSynchOut = {
            Class = IOGAM
            InputSignals = {
                GainCounter1Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter2Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter3Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
            }
            OutputSignals = {
                GainCounter1Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                }
                GainCounter2Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                }
                GainCounter3Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                }
            }
        }
        +GAMT1T2Interface = {
            Class = IOGAM
            InputSignals = {
                GainCounter1Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                    Samples = 2 //Run at half the frequency of thread 1
                }
                GainCounter2Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                    Samples = 2 //Run at half the frequency of thread 1
                }
                GainCounter3Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                    Samples = 2 //Run at half the frequency of thread 1
                }
            }
            OutputSignals = {
                GainCounter1Thread2 = {
                    DataSource = DDB1
                    Type = uint32
                    Samples = 1
                    NumberOfDimensions = 1
                    NumberOfElements = 2 //2 elements for each cycle (as it waits for 2 samples)
                }
                GainCounter2Thread2 = {
                    DataSource = DDB1
                    Type = uint32
                    Samples = 1
                    NumberOfDimensions = 1
                    NumberOfElements = 2 //2 elements for each cycle (as it waits for 2 samples)
                }
                GainCounter3Thread2 = {
                    DataSource = DDB1
                    Type = uint32
                    Samples = 1
                    NumberOfDimensions = 1
                    NumberOfElements = 2 //2 elements for each cycle (as it waits for 2 samples)
                }
            }
        }
        +GAMT1T3Interface = {
            Class = IOGAM
            InputSignals = {
                GainCounter1Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                    Samples = 4 //Run at one quarter of the frequency of thread 1
                }
                GainCounter2Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                    Samples = 4 //Run at one quarter  the frequency of thread 1
                }
                GainCounter3Thread1 = {
                    DataSource = RTThreadSynch
                    Type = uint32
                    Samples = 4 //Run at one quarter  the frequency of thread 1
                }
            }
            OutputSignals = {
                GainCounter1Thread3 = {
                    DataSource = DDB1
                    Type = uint32
                    Samples = 1
                    NumberOfDimensions = 1
                    NumberOfElements = 4 //4 elements for each cycle (as it waits for 4 samples)
                }
                GainCounter2Thread3 = {
                    DataSource = DDB1
                    Type = uint32
                    Samples = 1
                    NumberOfDimensions = 1
                    NumberOfElements = 4 //4 elements for each cycle (as it waits for 4 samples)
                }
                GainCounter3Thread3 = {
                    DataSource = DDB1
                    Type = uint32
                    Samples = 1
                    NumberOfDimensions = 1
                    NumberOfElements = 4 //4 elements for each cycle (as it waits for 4 samples)
                }
            }
        }
        +GAMDisplayThread1 = {
            Class = IOGAM            
            InputSignals = {
                Counter = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter1Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter2Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter3Thread1 = {
                    DataSource = DDB1
                    Type = uint32
                }            
            }
            OutputSignals = {
                Counter = {
                    DataSource = LoggerDataSource
                    Type = uint32
                }
                GainCounter1Thread1 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                }
                GainCounter2Thread1 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                }
                GainCounter3Thread1 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                }
            }
        }
        +GAMDisplayThread2 = {
            Class = IOGAM            
            InputSignals = {
                GainCounter1Thread2 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter2Thread2 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter3Thread2 = {
                    DataSource = DDB1
                    Type = uint32
                }            
            }
            OutputSignals = {
                GainCounter1Thread2 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                    NumberOfDimensions = 1
                    NumberOfElements = 2
                }
                GainCounter2Thread2 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                    NumberOfDimensions = 1
                    NumberOfElements = 2
                }
                GainCounter3Thread2 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                    NumberOfDimensions = 1
                    NumberOfElements = 2
                }
            }
        }
        +GAMDisplayThread3 = {
            Class = IOGAM            
            InputSignals = {
                GainCounter1Thread3 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter2Thread3 = {
                    DataSource = DDB1
                    Type = uint32
                }
                GainCounter3Thread3 = {
                    DataSource = DDB1
                    Type = uint32
                }            
            }
            OutputSignals = {
                GainCounter1Thread3 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                    NumberOfDimensions = 1
                    NumberOfElements = 4
                }
                GainCounter2Thread3 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                    NumberOfDimensions = 1
                    NumberOfElements = 4
                }
                GainCounter3Thread3 = {
                    DataSource = LoggerDataSource
                    Type = uint32
                    NumberOfDimensions = 1
                    NumberOfElements = 4
                }
            }
        }
    }
    +Data = {
        Class = ReferenceContainer
        DefaultDataSource = DDB1
        +DDB1 = {
            Class = GAMDataSource
        }
        +LoggerDataSource = {
            Class = LoggerDataSource
        }
        +Timings = {
            Class = TimingDataSource
        }
        +RTThreadSynch = {
            Class = RealTimeThreadSynchronisation
            Timeout = 5000 //Timeout in ms to wait for the thread to cycle.
        }
        +Timer = {
            Class = LinuxTimer
            SleepNature = "Default"
            Signals = {
                Counter = {
                    Type = uint32
                }
                Time = {
                    Type = uint32
                }
            }
        }
    }
    +States = {
        Class = ReferenceContainer
        +State1 = {
            Class = RealTimeState
            +Threads = {
                Class = ReferenceContainer
                +Thread1 = {
                    Class = RealTimeThread
                    CPUs = 0x1
                    Functions = {GAMTimer GAMVariable1 GAMT1TSynchOut GAMDisplayThread1}
                }
            }
        }
        +State2 = {
            Class = RealTimeState
            +Threads = {
                Class = ReferenceContainer
                +Thread1 = {
                    Class = RealTimeThread
                    CPUs = 0x1
                    Functions = {GAMTimer GAMVariable1 GAMT1TSynchOut GAMDisplayThread1}
                }
                +Thread2 = {
                    Class = RealTimeThread
                    CPUs = 0x2
                    Functions = {GAMT1T2Interface GAMDisplayThread2}
                }
                +Thread3 = {
                    Class = RealTimeThread
                    CPUs = 0x4
                    Functions = {GAMT1T3Interface GAMDisplayThread3}
                }
            }
        }
        +StateError = {
            Class = RealTimeState
            +Threads = {
                Class = ReferenceContainer
                +Thread1 = {
                    Class = RealTimeThread
                    CPUs = 0x1
                    Functions = {GAMTimer}
                }
            }
        }
    }
    +Scheduler = {
        Class = GAMScheduler
        TimingDataSource = Timings
    }
}

Instructions on how to compile and execute the examples can be found here.