Parsers

The core of the framework offers four parsers.

All the parsers implement the ParserI interface. Three of the parsers implement the ConfigurationParserI interface and are capable of transforming an input stream, encoded in any of the supported languages, into a ConfigurationDatabase. One parser is capable of transforming a mathematical expression into stack machine instruction to be used by RuntimeEvaluator.

Type

Meaning

StandardParser

The MARTe configuration language.

XmlParser

XML.

JsonParser

JSON.

MathExpressionParser

Mathematical expressions.

MARTe configuration language

The MARTe configuration language has a syntax similar to JSON and is parsed using the StandardParser.

The syntax is composed by a tree of name/value pairs separated by an = sign. Curly braces are used to define multi-dimensional arrays and to create new named nodes in the tree.

An example of a configuration file using the MARTe language:

A = {
   B = 1
   C = "ABCD"
   D = {1, 2, 3, 4}
   E = {"A", "B"}
   F = {
      G = 3.34
      H = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}
   }
}

Examples

The following example shows how to parse configuration files in all the supported languages.

Object configuration example (ConfigurationExample3)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/**
 * @file ConfigurationExample3.cpp
 * @brief Source file for class ConfigurationExample3
 * @date 14/03/2018
 * @author Andre' Neto
 *
 * @copyright Copyright 2015 F4E | European Joint Undertaking for ITER and
 * the Development of Fusion Energy ('Fusion for Energy').
 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved
 * by the European Commission - subsequent versions of the EUPL (the "Licence")
 * You may not use this work except in compliance with the Licence.
 * You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl
 *
 * @warning Unless required by applicable law or agreed to in writing, 
 * software distributed under the Licence is distributed on an "AS IS"
 * basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the Licence permissions and limitations under the Licence.

 * @details This source file contains the definition of all the methods for
 * the class ConfigurationExample3 (public, protected, and private). Be aware that some
 * methods, such as those inline could be defined on the header file, instead.
 */

#define DLL_API

/*---------------------------------------------------------------------------*/
/*                         Standard header includes                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/*                         Project header includes                           */
/*---------------------------------------------------------------------------*/
#include "AdvancedErrorManagement.h"
#include "ClassRegistryDatabase.h"
#include "ConfigurationDatabase.h"
#include "ErrorLoggerExample.h"
#include "JsonParser.h"
#include "Matrix.h"
#include "Object.h"
#include "Reference.h"
#include "ReferenceT.h"
#include "StandardParser.h"
#include "StreamString.h"
#include "Vector.h"
#include "XMLParser.h"

/*---------------------------------------------------------------------------*/
/*                           Static definitions                              */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/*                           Method definitions                              */
/*---------------------------------------------------------------------------*/
namespace MARTe2Tutorial {

/**
 * Configuration structures
 */
struct Gains {
	MARTe::float32 gain1;
	MARTe::float32 gain2;
};

struct Waveforms {
	MARTe::float32 *times;
	MARTe::float32 *values;
};

/**
 * @brief A MARTe::Object class will be automatically registered into the ClassRegistryDatabase.
 */
class ControllerEx1: public MARTe::Object {
public:
	CLASS_REGISTER_DECLARATION()

	/**
	 * @brief NOOP.
	 */
ControllerEx1	() {
		slowWaveform.times = NULL;
		slowWaveform.values = NULL;
		fastWaveform.times = NULL;
		fastWaveform.values = NULL;

	}

	virtual ~ControllerEx1 () {
		if (slowWaveform.times != NULL) {
			delete [] slowWaveform.times;
		}
		if (slowWaveform.values != NULL) {
			delete [] slowWaveform.values;
		}
		if (fastWaveform.times != NULL) {
			delete [] fastWaveform.times;
		}
		if (fastWaveform.values != NULL) {
			delete [] fastWaveform.values;
		}
		if (GetName() != NULL) {
			REPORT_ERROR_STATIC(MARTe::ErrorManagement::Information, "No more references pointing at"
					" %s [%s]. The Object will be safely deleted.", GetName(), GetClassProperties()->GetName());
		}
	}

	/**
	 * Read all the properties which are organised inside a tree
	 * Gains = {
	 *     Low = {
	 *         Gain1 = -1.0;
	 *         Gain2 = -3.0;
	 *     }
	 *     High = {
	 *         Gain1 = 7.0;
	 *         Gain2 = 9.0;
	 *     }
	 * }
	 * References = {
	 *     Slow = {
	 *         Waveform = {
	 *             Times  = {0 0.1 0.2 1}
	 *             Values = {1 2   3   4}
	 *         }
	 *     }
	 *     Fast = {
	 *         Waveform = {
	 *             Times  = {0 0.1 0.2 1}
	 *             Values = {1 2   3   4}
	 *         }
	 *     }
	 * }
	 */
	virtual bool Initialise(MARTe::StructuredDataI &data) {
		using namespace MARTe;
		bool ok = Object::Initialise(data);
		if (ok) {
			//Move in the tree
			ok = data.MoveRelative("Gains");
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the Gains section");
			}
		}
		if (ok) {
			ok = data.MoveRelative("Low");
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the Gains.Low section");
			}
		}
		if (ok) {
			ok = data.Read("Gain1", lowGains.gain1);
			if (ok) {
				REPORT_ERROR(ErrorManagement::Information, "Gains.Low.Gain1 = %f", lowGains.gain1);
			}
			else {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not read the Gains.Low.Gain1");
			}
		}
		if (ok) {
			ok = data.Read("Gain2", lowGains.gain2);
			if (ok) {
				REPORT_ERROR(ErrorManagement::Information, "Gains.Low.Gain2 = %f", lowGains.gain2);
			}
			else {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not read the Gains.Low.Gain2");
			}
		}
		if (ok) {
			ok = data.MoveToAncestor(1u);
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move back to the Gains section");
			}
		}
		if (ok) {
			ok = data.MoveRelative("High");
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the Gains.High section");
			}
		}
		if (ok) {
			ok = data.Read("Gain1", highGains.gain1);
			if (ok) {
				REPORT_ERROR(ErrorManagement::Information, "Gains.High.Gain1 = %f", highGains.gain1);
			}
			else {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not read the Gains.High.Gain1");
			}
		}
		if (ok) {
			ok = data.Read("Gain2", highGains.gain2);
			if (ok) {
				REPORT_ERROR(ErrorManagement::Information, "Gains.High.Gain2 = %f", highGains.gain2);
			}
			else {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not read the Gains.High.Gain2");
			}
		}
		if (ok) {
			//Move to the ancestor
			ok = data.MoveToAncestor(2u);
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move back to the References section");
			}
		}
		if (ok) {
			ok = data.MoveRelative("References.Slow.Waveform");
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the References.Slow.Waveform section");
			}
		}
		if (ok) {
			ok = ReadArray(data, "Times", slowWaveform.times);
		}
		if (ok) {
			ok = ReadArray(data, "Values", slowWaveform.values);
		}
		//Move back to the parent
		if (ok) {
			ok = data.MoveToAncestor(2u);
		}
		if (ok) {
			ok = data.MoveRelative("Fast.Waveform");
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the References.fast.Waveform section");
			}
		}
		if (ok) {
			ok = ReadArray(data, "Times", fastWaveform.times);
		}
		if (ok) {
			ok = ReadArray(data, "Values", fastWaveform.values);
		}

		return ok;
	}

private:
	bool ReadArray(MARTe::StructuredDataI &data, const MARTe::char8 * const arrayName, MARTe::float32 *&dest) {
		using namespace MARTe;
		if (dest != NULL) {
			delete [] dest;
		}

		AnyType arrayDescription = data.GetType(arrayName);
		bool ok = arrayDescription.GetDataPointer() != NULL_PTR(void *);
		uint32 numberOfElements = 0u;
		if (ok) {
			numberOfElements = arrayDescription.GetNumberOfElements(0u);
			ok = (numberOfElements > 0u);
			if (!ok) {
				REPORT_ERROR(ErrorManagement::ParametersError, "No elements defined in the array with name %s", arrayName);
			}
		}
		if (ok) {
			dest = new float32[numberOfElements];
			Vector<float32> readVector(dest, numberOfElements);
			ok = data.Read(arrayName, readVector);
			if (ok) {
				REPORT_ERROR(ErrorManagement::Information, "Array set to %f", readVector);
			}
			else {
				REPORT_ERROR(ErrorManagement::ParametersError, "Could not read the array with name %s", arrayName);
			}
		}
		return ok;
	}

	/**
	 * A list of properties.
	 */
	Gains lowGains;
	Gains highGains;
	Waveforms slowWaveform;
	Waveforms fastWaveform;
};

CLASS_REGISTER(ControllerEx1, "")

}

//Loads a given StructuredDataI
void Load(MARTe::ConfigurationDatabase &cdb) {
	using namespace MARTe;
	using namespace MARTe2Tutorial;

	REPORT_ERROR_STATIC(ErrorManagement::Information,
			"Successfully parsed CFG configuration %s", cdb);
	//After the printf the tree is again pointing at the last leaf
	cdb.MoveToRoot();
	CCString className1 = "ControllerEx1";
	ReferenceT<ControllerEx1> ref1(className1,
			GlobalObjectsDatabase::Instance()->GetStandardHeap());
	//Automatically generate a new object instance based on the class name and on the correct Heap and with the template reference.

	if (ref1.IsValid()) {
		ref1->SetName("ControllerInstance1");
		REPORT_ERROR_STATIC(ErrorManagement::Information,
				"Successfully created an instance of %s", className1.GetList());
		cdb.MoveToRoot();
		if (ref1->Initialise(cdb)) {
			REPORT_ERROR_STATIC(ErrorManagement::Information,
					"Successfully configured instance of %s", ref1->GetName());
		} else {
			REPORT_ERROR_STATIC(ErrorManagement::FatalError,
					"Failed to configure instance of %s", ref1->GetName());
		}
	}
}

void LoadCfg() {
	using namespace MARTe;
	using namespace MARTe2Tutorial;

	//Parse the configuration using the standard parser
	StreamString configurationCfg = ""
			"Gains = {\n"
			"    Low = {\n"
			"        Gain1 = -1.0\n"
			"        Gain2 = -3.0\n"
			"    }\n"
			"    High = {\n"
			"        Gain1 = 7.0\n"
			"        Gain2 = 9.0\n"
			"    }\n"
			"}\n"
			"References = {\n"
			"    Slow = {\n"
			"        Waveform = {\n"
			"            Times  = {0 0.1 0.2 1}\n"
			"            Values = {1 2   3   4}\n"
			"        }\n"
			"    }\n"
			"    Fast = {\n"
			"        Waveform = {\n"
			"            Times  = {0 0.1 0.2 1}\n"
			"            Values = {1 2   3   4}\n"
			"        }\n"
			"    }\n"
			"}\n";

	ConfigurationDatabase cdb;
	StreamString err;
	REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading CFG:\n%s", configurationCfg.Buffer());
	//Force the string to be seeked to the beginning.
	configurationCfg.Seek(0LLU);
	StandardParser parser(configurationCfg, cdb, &err);
	bool ok = parser.Parse();
	if (ok) {
		//After parsing the tree is pointing at the last leaf
		cdb.MoveToRoot();
		Load(cdb);
	} else {
		StreamString errPrint;
		errPrint.Printf("Failed to parse %s", err.Buffer());
		REPORT_ERROR_STATIC(ErrorManagement::ParametersError,
				errPrint.Buffer());
	}
}

void LoadXml() {
	using namespace MARTe;
	using namespace MARTe2Tutorial;

	//Parse the configuration using the XML parser
	StreamString configurationXml = ""
			"<Gains>\n"
			"    <Low>\n"
			"        <Gain1>-1.0</Gain1>\n"
			"        <Gain2>-3.0</Gain2>\n"
			"    </Low>\n"
			"    <High>\n"
			"        <Gain1>7.0</Gain1>\n"
			"        <Gain2>9.0</Gain2>\n"
			"    </High>\n"
			"</Gains>\n"
			"<References>\n"
			"    <Slow>\n"
			"        <Waveform>\n"
			"            <Times>{0 0.1 0.2 1}</Times>\n"
			"            <Values>{1 2   3  4}</Values>\n"
			"        </Waveform>\n"
			"    </Slow>\n"
			"    <Fast>\n"
			"        <Waveform>\n"
			"            <Times>{0 0.1 0.2 1}</Times>\n"
			"            <Values>{1 2   3  4}</Values>\n"
			"        </Waveform>\n"
			"    </Fast>\n"
			"</References>\n";

	ConfigurationDatabase cdb;
	StreamString err;
	REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading XML:\n%s", configurationXml.Buffer());
	//Force the string to be seeked to the beginning.
	configurationXml.Seek(0LLU);
	XMLParser parser(configurationXml, cdb, &err);
	bool ok = parser.Parse();
	if (ok) {
		//After parsing the tree is pointing at the last leaf
		cdb.MoveToRoot();
		Load(cdb);
	} else {
		StreamString errPrint;
		errPrint.Printf("Failed to parse %s", err.Buffer());
		REPORT_ERROR_STATIC(ErrorManagement::ParametersError,
				errPrint.Buffer());
	}
}

void LoadJson() {
	using namespace MARTe;
	using namespace MARTe2Tutorial;

	//Parse the configuration using the JSON parser
	StreamString configurationJson = ""
			"\"Gains\": {\n"
			"   \"Low\": {\n"
			"      \"Gain1\": \"-1.0\",\n"
			"      \"Gain2\": \"-3.0\"\n"
			"   },\n"
			"   \"High\": {\n"
			"      \"Gain1\": \"7.0\",\n"
			"      \"Gain2\": \"9.0\"\n"
			"   }\n"
			"},\n"
			"\"References\": {\n"
			"   \"Slow\": {\n"
			"       \"Waveform\": {\n"
			"           \"Times\": [0, 0.1, 0.2, 1],\n"
			"           \"Values\": [1, 2, 3, 4]\n"
			"        }\n"
			"   },\n"
			"   \"Fast\": {\n"
			"       \"Waveform\": {\n"
			"           \"Times\": [0, 0.5, 1],\n"
			"           \"Values\": [1, 0, 1]\n"
			"        }\n"
			"   }\n"
			"}\n";
	REPORT_ERROR_STATIC(ErrorManagement::Information, "Loading Json:\n%s", configurationJson.Buffer());
	ConfigurationDatabase cdb;
	StreamString err;
	//Force the string to be seeked to the beginning.
	configurationJson.Seek(0LLU);
	JsonParser parser(configurationJson, cdb, &err);
	bool ok = parser.Parse();
	if (ok) {
		//After parsing the tree is pointing at the last leaf
		cdb.MoveToRoot();
		Load(cdb);
	} else {
		StreamString errPrint;
		errPrint.Printf("Failed to parse %s", err.Buffer());
		REPORT_ERROR_STATIC(ErrorManagement::ParametersError,
				errPrint.Buffer());
	}
}

int main(int argc, char **argv) {
	SetErrorProcessFunction(&ErrorProcessExampleFunction);
	LoadCfg();
	LoadXml();
	LoadJson();
	return 0;
}

Instructions on how to compile and execute the example can be found here.